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Abstract. In the article some new concepts of text building based on the h-point are 
introduced, namely the thematic concentration considering the proportion of autosemantics 
above the h-point, autosemantic pace filling expressing the proportions of autosemantics in h-
intervals, and autosemantic compactness being a function of the parameters of the exponential 
curve representing the pace filling. Tests for comparing texts are proposed. 
 
 1. Each text has an infinite number of properties. From time to time one succeeds to 
coin conceptually a new property which may be intuitively cogent but its quantification and 
measurement (operationalization) may be a matter of long years of scientific discussion. A 
property can be operationalized in many different ways each of which can capture a special 
aspect of the given property. Remember the dozens of definitions of vocabulary richness 
based on the (intuitive) relation between V (vocabulary) and N (text length) or on the type-
token ratio, and the rather technical definition using the Lorenz curve of deviations of the 
inverse cumulative rank-frequency distribution from the P00 – P11 straight line which can be 
easily processed statistically (Popescu, Altmann 2006) and having a clear linguistic meaning, 
expressing the deviation from the maximal possible richness. Text properties are our 
conceptual constructs and are operationalized by non-unique definitions, e.g. such a simple 
property like “text length” is not “given” but defined in terms of numbers of phonemes, 
morphemes, syllables, word forms, lemmas, beats, phrases, clauses, sentences, hrebs (= 
denotative units), etc. And each of these units can in turn be defined in different ways as is 
known from 150 years of development of modern linguistics.  

In this contribution we shall try to capture a phenomenon which can, perhaps, prel-
iminarily be called autosemantic compactness of the text. Since its computation consists of a 
series of different steps, we first describe them individually.  

2. One usually speaks about auto- and synsemantics, some authors distinguish auto-
semantics, functional words, auxiliaries, vicesemantics, synsemantics etc. It depends on the 
grammatical philosophy of the researcher or on the aim of the investigation which classes are 
established. For our purposes we define nouns as basic autosemantics. The basic autsemantics 
have two kinds of first order predicates, namely adjectives and verbs. All other word classes 
or parts of speech are either predicates of second or higher order, or auxiliaries, vicesemantics 
etc. In our analysis we shall be concerned only with “things” expressed as nouns and 
predicates of first order (adjectives and verbs). Everything else, also auxiliary and modal 
verbs will belong to the complement class. All this can easily be stated using the available 
PoS-taggers which can be downloaded from the Internet.  
 For a text under analysis a list of word forms or lemmas containing information about 
the affiliation of the word to a word class must be prepared. This goes also automatically 
using PoS-taggers from the Internet such as the CLAWS part-of-speech tagger for English at 
http://www.comp.lancs.ac.uk/ucrel/claws/. Some programs differentiate between uppercase 
and lowercase letters thus the text should be slightly (mechanically) pre-processed.  



 The list (sequence of word forms/lemmas) must be transformed in a frequency list and 
the counted entities should be ordered by decreasing frequency in order to obtain a rank-
frequency distribution. (The argumentation with the frequency spectrum would be quite 
different). Word forms and lemmas could, perhaps, yield different results. Up to now there are 
no comparative studies. A good frequency counter can be found in the Internet, e.g. 
http://www.writewords.org.uk/word_count.asp. 

In the rank-frequency distribution, f = f(r), one finds a “nearest point” minr which has the 
minimal distance 2 2 1/ 2( )r f+  to the origin [0,0]. Thus, for instance, for a Zipf distribution 

( ) / af r c r=  (with a and c constants), the rank of this point is given by 1/[2(1 )] 1/(1 )
min

a ar a c+ += . 
On the other side, not too far from it but, generally, distinct, there is another remarkable 
mathematical point (the so called “fixed point”) for which r = f(r), i.e. at which the rank 
equals the frequency. (i) Actually, in all our preceding papers, we meant and called this latter 
“the h-point”. The rank of this point for the above Zipf distribution is given by 1/(1 )a

Zipfh c += , 

that is the two above points rank ratio is 1/[2(1 )]
min / a

Zipfr h a += . As a numerical example, let us 
consider the Zipf fitting of Goethe’s Erlkoenig, for which a = 0.6, hence min / 0.8525Zipfr h = . 
Generally, only for symmetrical distributions, such as the particular Zipf distribution 

( ) /f r c r= , that is for a = 1, the nearest point to the origin (0, 0) and the h-point would 
coincide at 1/ 2

min Zipfr r c= = . (ii) If there is not exactly such a r = f(r) point, one can take the 
last r so that r < f(r) and r+1 > f(r+1), or (iii) one can take the mean of both, (iv) one takes the 
point min[abs(r - f(r))]. This is the meaning of what we called h-point (cf. Popescu 2006; 
Popescu, Altmann 2006, 2007; Popescu, Best, Altmann 2007). A further numerical example 
is shown in Table 1 using the first 30 most frequent word forms in Rutherford´s Nobel 
lecture. As can easily be seen, criterion (ii) is fulfilled at rank r = 26. The proportion of 
autosemantics above the h-point is called thematic concentration (c.f. Popescu, Best, Altmann 
2007). For Rutherford we would obtain the autosemantics: 11 radium, 13 helium, 15 
particles, 16 particle, 21 atom, 25 rays, i.e. 6 autosemantics out of 26 pre-h words, resulting 
in a thematic concentration proportion of 6/26 = 0.23. Evidently, the result would slightly 
change if we consider lemmas.  
 

Table 1 
Ranking of the most frequent word forms 

 in E. Rutherford´s Nobel lecture 
 

Rank Frequency  Word form  PoS 
1 464 THE AT0 
2 381 OF PRF 
3 140 A AT0 
4 121 THAT CJT 
5 116 AND CJC 
6 113 IN PRP 
7 87 TO PRP 
8 85 WAS VBD 
9 63 BY PRP 
10 60 IT PNI 
11 60 RADIUM NP0 
12 57 FROM PRP 



13 51 HELIUM NN1 
14 51 IS VBZ 
15 48 PARTICLES NN2 
16 44 PARTICLE NN1 
17 42 THIS DT0 
18 42 BE VBI 
19 41 AT PRP 
20 40 WERE VBD 
21 38 ATOM NN1 
22 36 WITH PRP 
23 29 FOR PRP 
24 28 AN AT0 
25 28 RAYS NN2 
26 27 AS CJS 
27 25 ITS DPS 
28 24 ON PRP 
29 23 OR CJC 
30 22 RADIOACTIVE AJ0 

 
The main purpose of the present paper is to bring arguments in favor of using the h-

point also as a natural yardstick for the whole rank-frequency distribution. A simple 
application consists in measuring the stepwise crowding of autosemantics along the rank axis 
in fixed h steps, e.g. in Rutherford´s text in steps having a size of h = 26 successive ranks 
each. For this purpose, the rank axis should be divided in V/h intervals, where V is the text 
vocabulary, as illustrated in Table 2 for V/h = 995 (ranks)/26 (ranks/step) = 38.27 steps. The 
smallest crowding is 0, the maximal crowding is h. Evidently, it can be assumed that with 
increasing rank (and decreasing frequency) the number of autosemantics grows. If we 
partition the text in intervals of h ranks and state the number of autosemantics in each of 
them, we obtain a monotonously increasing function. Since the “steps” or h-intervals fill very 
quickly with autosemantics, the rate of change  of crowding is the smaller the nearer is the 
step to its asymptote, say a. We assume a proportional relation and set 

 

(1) ( )dy k a y
dx

= − , 

 
where y is the crowding of autosemantics, x is the step, k is a proportionality constant and a is 
the asymptote. Solving (1) and assuming y(0) = 0, we obtain 
 

(2) y = a(1 – exp(– kx)), 
 
representing the increase of the number of autosemantics (their crowding) in subsequent h-
intervals. Here a and k are parameters, a is the asymptote. In Fig. 1 one finds the general form 
of the autosemantics crowding function (2). 



 
Figure 1. The exponential function as used to fit stepwise autosemantics filling  

of the rank-frequency distribution partitioned in V/h steps. 
 
Generally, in our application, the parameter a ≤ h and the empirical points may attain h before 
the last h-interval but the fitted curve capturing the means of points need not. In Table 2 we 
present the empirical values of Rutherford´s text that are best fitted in Figure 2 by the 
following function  
  

y =  21.40658(1 – exp(-0.35932x)) 
 
One can see that the curve does not reach h = 26 (its asymptote is a = 21.407) but it captures 
the increasing crowding of autosemantics in a satisfactory way.  
 

Table 2 
Stepwise crowding of autosemantics in Rutherford´s Nobel lecture 

 

yardstick 
h = 26 

re-ranking 
x paces 

autosemantic 
pace filling y 

yardstick 
h = 26 

re-ranking 
x paces 

autosemantic 
pace filling y 

26 1 6 546 21 20 
52 2 14 572 22 23 
78 3 13 598 23 22 
104 4 19 624 24 24 
130 5 12 650 25 21 
156 6 19 676 26 22 



182 7 25 702 27 24 
208 8 19 728 28 20 
234 9 20 754 29 23 
260 10 19 780 30 22 
286 11 20 806 31 23 
312 12 18 832 32 20 
338 13 20 858 33 24 
364 14 22 884 34 25 
390 15 19 910 35 24 
416 16 22 936 36 22 
442 17 22 962 37 21 
468 18 21 988 38 20 
494 19 17 995 38.27*) 7 
520 20 20 *) V/h = 995 (ranks)/26 (ranks/pace) = 38.27 paces 

 
 
In Fig. 2  we present some graphs of different texts (Nobel lectures). Since the h-intervals are 
relatively small, the fluctuation of  autosemantic crowding is relatively great, hence we obtain 
smaller determination coefficients but all F and t-tests are highly significant. For example the 
t-tests for the parameters in Rutherford yield ta = 51.11, tk = 7.17 and the F-test for regression 
yields F = 67.97, all very highly significant, though the determination coefficient is R2 = 0.65 
only. In general the exponential function and its common linguistic derivation seem to be a 
satisfactory solution. “Better” curves can, of course, be found but their embedding in 
linguistic model building would be rather difficult. 

 
 
 

 





 

 
Figure 2. Graphs of autosemantic compactness of some Nobel lectures 

 
The pictures of individual texts are very similar. It would be necessary to compare texts in 
different languages in order to obtain a more general idea of this regularity. 

In Table 3 a survey of several Nobel lectures is presented.. 
 

Table 3 
Autosemantics compactness and pace filling data of several Nobel lectures 

 
Nobel 
  

Field 
  

N 
  

h 
  

a 
  

k 
  

Compactness 
tan α = ak 

Pace filling 
a/h 

Feynman Phys 11265 41 34.196 0.316 10.806 0.834 
Buck Lit 9088 39 35.975 0.252 9.066 0.922 
Rutherford Chem 5083 26 21.407 0.359 7.685 0.823 
Banting Med 8193 32 27.185 0.238 6.470 0.850 
Pauling Peace 6246 28 24.426 0.259 6.326 0.872 
Macleod Med 4862 24 20.483 0.260 5.326 0.853 
Russell Lit 5701 29 26.434 0.200 5.287 0.912 
Buchanan Econ  4622 23 20.204 0.256 5.172 0.878 
Bellow Lit 4760 26 23.562 0.208 4.901 0.906 
Lewis Lit 5004 25 22.612 0.164 3.708 0.904 
Marshall Peace 3247 19 16.677 0.190 3.169 0.878 
 



 
3. Some properties of the given curve can be interpreted textologically. As already mentioned 
above, the proportion of autosemantics in the first h-step can be considered thematic 
concentration. Since the second step consists also seldom of autosemantics only, it can be 
called secondary thematic concentration. Since both represent proportions, intertextual com-
parisons are easily possible using an asymptotic normal text. 

 The extent a/h to which the asymptote y = a of curve (1) approaches the value of the pace 
h can be considered autosemantic pace filling (APF). The parameter a depends not only on 
the last pace but on all paces.  

Consider for example the APF coefficients with Rutherford and Lewis. We obtain 
 

Rutherford    Lewis 
h        26     25 
a        21.407                  22.612  

     APF  21.407/26 = 0.823   22.612/25 = 0.904 
 
Since the standard deviation of any estimated parameter is automatically computed by the 
optimization program (see e.g. Fig. 2), the variance of APF can be obtained as Var(APF) = 
Var(a)/h2, hence our test criterion will be 
 

(3) 1 2 1 2

1 2 1 2
2 2

1 2

( ) ( ) ( ) ( )
APF APF APF APFz

Var APF Var APF Var a Var a
h h

− −
= =

+
+

. 

 
In our case we obtain 
 

 
2 2

2 2

0.823 0.904 4.03
0.41882 0.30031

26 25

z −
= =

+

 

 
signalizing a highly significant difference between the APF of Rutherford and Lewis. 
 Consider now the properties of the curve in Figure 1. The text is autosemantically the 
more compact the steeper the slope of the curve. Since the tail of the rank-frequency distribu-
tion is always “almost full” of autosemantics, it is its beginning that contributes more to 
autosemantic compactness (and thematic concentration). Thus the slope of the curve at x = 0 
can be considered a characteristic of the autosemantic compactness (AC). For curve (1) we 
obtain 
  

(4) exp( )dy ak kx
dx

= −  

 
and inserting x = 0 we get 
 
(5) tan akα = = AC 
  
consisting of both parameters. The differences between the authors are here much greater, the 
range of analysed texts is from 3.2 to 10.8. 



 Again, we can set up an asymptotic test ignoring the covariances between the 
parameters. Since we need the variance of AC, we derive it using Taylor expansion and obtain 
 

(6) 
2 2

( ) ( ) ( )AC ACV AC Var a Var k
a k

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
. 

 
 
The individual expressions yield 
 
(7) 2 2( ) ( ) ( )V AC k Var a a Var k= +  
 
a simple expression in which we use the estimated value of the parameter as its expectation. 
Hence our asymptotic and approximate criterion for measuring the difference between two 
indices of autosemantic compactness will be 
 

(8) 1 2

1 2( ) ( )
AC ACz

V AC V AC
−

=
+

. 

 
Using the data from Rutherford and Lewis we have 
 
              Rutherford Lewis 
 a  21.407  22.612 
 k  0.359  0.164   
 Var(a)  0.4192  0.3002 

 Var(k)  0.0502  0.0132. 
 
Inserting these values in (7) we obtain for Rutherford 
 

2 2 2 2( ) 0.359 0.419 21.407 0.050 1.16728RutherfordV AC = + =  
 
For Lewis we obtain 
  

V(ACLewis)  = 0.08883 
 
Hence comparing Rutherford and Lewis we obtain 
 

 
7.685 3.708 4.457

1.16728. 0.08883
z −
= =

+
. 

 
The difference is again highly significant. The adding of covariances rendered the difference 
somewhat smaller. 

4. As shown in Fig. 1, the first derivation of the curve in point x = 0 yields the tangent 
of the curve, i.e. its slope. The straight line in this point is y = akx. On the other hand, the 
asymptote of the curve is y = a, hence the crossing point is P[1/k, a]. Thus the autosemantic 
compactness (by definition tan α = ak) varies proportionally with k and inverse proportionally 
with x(P) = 1/k. This point characterizes the autosemantic construction of the text and can be 



used e.g. for performing discriminant or other taxonomic analyses. In Table 4 one finds these 
coordinates for all texts and in Figure 3 the points with names of authors are presented.  
 

Table 4 
Autosemantic coordinates of individual texts 

 
Nobel Field N h 1/k a 

Rutherford Chem 5083 26 2,786 21,407 
Feynman Phys 11265 41 3,165 34,196 
Macleod Med 4862 24 3,846 20,483 
Pauling Peace 6246 28 3,861 24,426 
Buchanan Econ  4622 23 3,906 20,204 
Buck Lit 9088 39 3,968 35,975 
Banting Med 8193 32 4,202 27,185 
Bellow Lit 4760 26 4,808 23,562 
Russell Lit 5701 29 5,000 26,434 
Marshall Peace 3247 19 5,263 16,677 
Lewis Lit 5004 25 6,098 22,612 

 
The number of texts is too small to ascertain a dependence of the coordinate points on text 
length N. The dispersion is preliminarily too great. 

 
Figure 3. Autosemantic coordinates of individual texts 

 
 



5. Conclusions 
 
The dynamics of filling a text with autosemantics of first order (nouns, verbs, adjectives) can 
be quantified in different ways. Our aim was only to show some methods, operationalizations 
and testing possibilities. If texts in other languages could corroborate these results, one could 
tend to accept the above simple exponential dependence of autosemantic filling as a candidate 
for a text law. However, using one language only, the corroboration is very weak. In any case 
a/h seems not to be dependent of N. 
 On the other hand, the partitioning of words in autosemantics and the rest is only one 
of the great number of possibilities for which we do not even have concepts. Nevertheless, the 
above methods could be helpful in discovering finer aspects of word frequencies. One further 
aspect of autosemantics is their coincidence in texts giving rise to networks whose properties 
can be studied by the respective methods of graph theory. 
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